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The analysis  of numerica l  solutions is the basis  for investigating the effect of various t e rms  
in the equations of the nonstat ionary nonisothermal motion of a real gas on the nature of the 
solution and its resul ts  in o rder  to simplify and linearize the original equations to a form 
permit t ing analytical  solution. 

1. In the investigation of the nonstat ionary nonisothermal flows of a gas in pipes it is neces sa ry  to 
solve simultaneous equations in gas dynamics which have the following form for  a cyl indrical  pipe of con- 
stant d iameter  [1]: 

a p  + a (pw) = O, (1) 
Ot Ox 

( )~ w,wI), (2) a (ow) + o (p + pw2) = - - o  gz' + - ~  
Ot Ox 

1 [ ~  O (  OT i l ,  = - - o g z ' w + - ~  q(x, t)+ -~x kl ax ] ]  (3) 

P=pgzoRT, 0 < x < L ,  t > 0 ,  (4) 

and the heat conduction equation for the external  medium with appropriate  initial and boundary conditions. 
To obtain the exact  solution of the complete sys tem of equations in finite analytical form encounters  con- 
s iderable mathematical  difficulties in connection with which in the general  case it is difficult to est imate 
the contribution of the separate  t e rms  in the above equations for a rb i t r a ry  boundary conditions and, conse-  
quently, to justify deductions about simplifying the equations (1)-(4) and reducing them to a form permit t ing 
approximate analytical  solution. Hence it is expedient to make es t imates  on the basis  of the numerical  
solutions of problems in which the boundary conditions are  specified as discontinuities in the boundary func- 
tions known to be g rea t e r  than those encountered in actual problems.  

Usually in solving problems in the nonstat ionary nonisothermal motion of a gas involving gas t r ans fe r  
in pipelines the following simplifications a re  possible: the flow of the gas is assumed to be one-dimensional;  
in the case of long pipelines and at gas velocit ies much less than that of sound, we can neglect t e rms  in 
w0w/ax and 0w/at  in the equations of motion and energy and also changes in the geometr ica l  height z [1]. 
In addition, we can neglect heat t r ans fe r  along the axis of the pipe because of the thermal  conductivity of the 
gas; it is assumed that the t empera tu re  of the external medium is known and that the heat exchange law is 
taken in Newton's form [1]. 

To see that these assumptions are  permiss ib le  it is neces sa ry  to compare  the solution of the complete 
equations (1)- (4) with that of the equations simplified in accordance with the above conditions. 

With the above assumptions,  Eqs. (1)- (4) can be reduced af te r  some algebra to the following form: 
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Fig. 1. Curves  for the change in the non- 
dimensional  gas veloci ty  along the length 
of the pipeline: 1) t- =0; 2) i- =0.23; 3) 
t- = 0.69; 4) t- =2.3; 5) t- =4.6.  
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( OZo ) ] OP (T*--T)zoT 
r ~ -  p - - ~ - + n  P , (7) 

0 < x < L ,  t>O, -  

Whe re 
z0=z0(P, 7"); c p = c  v(P, T); a = f / R ;  b=~.R/2gDF; 

c = AR~/cvf; m = AR/cp; n = K~DR/cJ. 

In calculat ing the nonsta t ionary  noniso thermal  gas 
flows descr ibed  by Eqs. (5)- {7) we take the initial  conditions 
as the distr ibution of the p a r a m e t e r s  of the s teady flow 
along the pipe length at  the init ial  moment  of t ime (t = 0). 

In the genera l  case  to de te rmine  the ini t ial  dis tr ibution we have to solve a Cauchy problem (with given con- 
ditions for  the gas t e m p e r a t u r e  and p r e s s u r e  at  one end of the pipe), for  the appropr ia te  nonlinear  s y s t e m  
of ord inary  different ia l  equations to which (5)- (7) reduce for  the steady motion of the gas.  

We cons ider  boundary  conditions of the following form for  Eqs. (5)- (7): 

P(0, t )=fz( t ) ,  T(0, t)=f2(t) ,  G(L, t)=:cp(t), t > 0 .  (8) 

2. To solve Eqs.  (5)- (7) numer ica l ly  in 0 - x -< L, t _> 0, with the above initial  dis t r ibut ion of the 
flow p a r a m e t e r s  and the boundary conditions (8), we use a finite difference method. Then (5)-(7) a r e  f i r s t  
t r a n s f o r m e d  to a s y s t e m  of quas i - l i nea r  equations of evolut ionary  type [2]. For  this s y s t e m  we cons t ruc t  
explici t  second o rde r  finite di f ference schemes  with s tep length h: the de r iva t ives  with r e spec t  to x a r e  
replaced  a t  in ternal  points by s y m m e t r i c  di f ference re la t ions  and at  the boundary points by the appropr ia te  
one-s ided  th ree -po in t  d i f ference equations.* It is appropr ia te  to use such schemes  for s y s t e m s  of equations 
of quite complex  form (5)- (7), while r e s t r i c t ions  on the stabil i ty,  as shown by invest igat ions and prac t ica l  
calcula t ions  for  the flows considered,  do not lead to a significant  reduction in the t ime  step length T. 

Ta de te rmine  the p r e s s u r e  (P) and t e m p e r a t u r e  {T) at  points of the right boundary (x = L) in the case  
of condition (8), we must  solve s imul taneous ly  a s y s t e m  of nonl inear  di f ferent ia l  equations at  this  boundary  
which follows f rom the above equations:  

P 1 OT OP 
Ozo ~ Ot ot T m z o + r - ~ - ]  

6 _OT + bc 637"z~ �9 Oz__.__~o __ n (T*-- T) 
a Ox p2 OT 

(9) 
&o I 1 m z o + T - - ~ -  ] z---~ 

Op ~ 
2bG2zoT. (10) 

Ox 

The finite difference approximat ion  for  Eqs.  (9) and (10) a t  the boundary  ~ = 1 with an a c c u r a c y  of 
O(h 2) leads to the following nonlinear equations for  the p r e s s u r e  and t e m p e r a t u r e :  

fi~.,+, = _~1 (4fin2 .k+, __ p~n_2.~+,) __ 2 hAx~2z ~ (Pn.k+,, Tn.k+,) Tn.k+,, (11) 
3 3 

:Fn,k+, = Pn,k+t - -  C (k = 0, 1, 2, .), (12) 
B " "  

* The t r a n s f o r m e d  sys t em of Eqs. i5)-(7) was solved numer ica l ly  on a compute r  in nondimensional  form.  
The nondimensional var iab les  were :  ~ = x / L ;  ~- =t/t0: -P = P / P c ;  ~-' = G/G0' where  t o = L/c0; Pc,  Tc 
were  the c r i t i ca l  p r e s s u r e  and t empera tu re ;  c o is the speed of sound in the gas.  
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Fig. 2. Change in the pressure  derivative with time along the length of the pipeline: 
1)}-=0.25; 2)}-=0.75; 3)}-=2.25;  4)}-=4.25;  5)}7=6.50. 

Fig. 3. Change in P /G  with time: 1 ) } = 0 ;  2) x = 0 . 5 ;  3) 5 =  1.0. 

whe re 
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To determine the values of Pn, k+l  from (11) we use an i terat ion method: 

P("+" [ +  (4~-~,k+~ -2 ,,.k+l = - -  P,,-2.k+,) 

fi(~) ) fi,~) ] W2 n,k+l n,k-[-I 2 hAx~zo {fitn) - -C  - -C k . ,k+,,  �9 (z3) 3 B B 

- (0) -2 the zero We take Pn, k+l  = (1/3) (4p2n_l, k + l - P n ,  k+l) as order  approximation in the i terat ion process (13). 

For  an ideal gas (z 0 = 1), Eq. (11) can be solved for Pn, k+ 1 in finite form: 

1 A l h ~  1 

-I- V A l h ~  -~- Pn-2.k+I- 4P;--,.k+, - 2Alh - -~  ~2 . (14) 

3. The above finite difference schemes and algori thms were used to calculate the nonstationary non- 
isothermal  flows of a real  gas in pipelines for the following purposes: to est imate the effect of the iner t ia l  
t e rms  a (pw)/at and 0 (pw2) /Ox in the equations of the nonstationary nonisothe rma I motion of a gas in pipelines 
(1)-(4); to investigate the effect of the actual properties of the gas on the nature of the changes in the para- 
meters  of the gas flow by comparison with the case of an ideal gas; to investigate the nature of the changes 
in the various t e rms  in the original equations so as to simplify them and obtain linearized equations permit-  
ting approximate analytical  solutions. 

a) From the results  of the calculations we compared the numerical  solutions of Eqs. (1)- (4) under the 
above conditions with and without the t e rms  O(pw) /Ot  and 0(pw2)/ax for the following boundary conditions 
(t >0): 

p (o, t) = fl  (t), T (0 ,  t) = L (t); Ow(L, t ) -  0. (15) 
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TABLE 1. Comparison of the Distributions of 
the P a r a m e t e r s  of Steady Nonisothermal Flow 
With and Without Changes in the Ve locity Head 
(Actual gas) 

P' atm r, ~ 
x, km 

I II I I I  

0 55,0 
10 53,25 
20 51,44 
30 49,60 
40 47,70 
50 45,78 
60 43,79 
70 41,71 
80 39,54 
90 37,26 

I00 34,85 

Note. I corresponds 

55,0 
53,22 
51,41 
49,56 
47,66 
45,72 
43,70 
41,61 
39,43 
37,13 
34,70 

to the 

47,0 
42,0 
37,5 
33,5 
29,9 
26,6 
23,7 
21,0 
18,6 
16,4 
14,4 

47,0 
42,0 
37,5 
33,4 
29,8 
26,5 
23,6 
21,0 
18,5 
16.3 

14,3 
solution taking account of changes 

in the velocity head; II to the solution ignoring changes in the 
velocity head. The initial coad_itions were: P(0) = 55 kG/em2; 
T(0)= 47~ P w ( x ) = 2 5 k g . s e c / m S ; 0  _<x _<100. 

At the initial moment of time (t = 0) the gas flow 
was steady. The case under considerat ion is limiting 
and this makes it possible to es t imate  the maximal 
possible divergences.  Physical ly  this problem co r -  
responds to the case of the instantaneous covering of 
the right end of the pipe. 

The solution of Eqs. (5)-(7), ignoring the iner-  
tia[ te rm,  was obtained using the above algorithm; 
in the example considered it was compared with the 
numerical  results  obtained for the initial and boundary 
conditions given below and the same initial data for 
the sys tem of equations which takes account of the in- 
er t ia l  t e rms  [3]. The conditions for the numerical  
example, the computational resul ts ,  and the c o r r e s -  
ponding es t imates  are  given in [2]. 

We also compared the solutions with and with- 
out the inert ial  t e rms  for s ta t ionary gas flow (Table 
1). It follows from the analysis  of the resul ts  that 
the inert ial  t e rms  have insignificant effect on the gas 
flow conditions in main pipelines. 

b) The calculations made is possible to analyze for the flows considered the limits of the deviations 
of the gas flow parameters  and the e r r o r s  o c c u r r i n g a s a  result  of ignoring the actual proper t ies  of the gas 
in calculating the p ressure  and tempera ture  distributions of the gas along the pipeline [2]. 

In addition, to es t imate  the effect of the gas being thermodynamical ly  not ideal on the nature of the 
flow conditions we considered the case of a discontinuous increase  in the gas flow rate at the end of the 
pipe. This case is limiting in the sense that in real  conditions, with the exception of the case where there 
are  discontinuities in the pipelines, all possible changes in pw are  smal le r  in magnitude and more  drawn 
out in t ime. 

The conditions for the numerical  example in the second case were as follows. The initial conditions 
for the calculation of the steady flow were P(0,0) = 55 �9 104 kG/m2; T(0,0} --320~ G(0,0} = 100 kg/sec .  The 
boundary conditions (t >0) were:  P(0,t} =55 �9 104 kG/m2; T(0,t) =320~ G(L,t) =200 kg/sec .  

The calculations were made with the following values of the paramete rs :  L = 100 km; D = 0.7 m; 
Pa =45.8.104 kG/m2; T c =190.6~ k =0.012; R =50 kGm/kg .  ~ Cp =0.5 kca l /kg .  ~ T*--275~ K =2.0 
kca l /m 2. h .  ~ 

Ber t leau ' s  form of the state equation was used as the equation of state for the real  gas. 

Analysis of these numerical  calculations in par t icular  showed that the curves  for the depress ion of the 
temperature  along the length of the pipelines for an actual gas are  lower than the corresponding curves  for 
an ideal gas because the gas is thermodynamical ly  not ideal. As x increases  (i.e., the depress ion of the 
pressure)  the tempera ture  difference between a real  and an ideal gas increases .  At the end of the pipe, for 
example, when }-=4.6 (20 min) this difference reaches a very  significant value, 0.06 (~11.4~ for the 
case under consideration; for }- = 0 the d iscrepancy between the t empera tures  is 0.017 (~3.3~ at the end 
of the pipe. The calculations show that the pressure  of a real  gas in time remains  higher than that of an 
ideal gas:  For}- =0 the d iscrepancy is 0.04 (~1.8- 104 kG/m 2) at the end of the pipe. As the t ime increases  
the difference between the p ressure  of a real  gas and that of an ideal one increases  and in the given example 
reaches Ap = 0.17 (7.6 �9 104 kG/m 2) for }- = 4.6. At points far  from the right boundary the difference is 0.001 
-0.002 (0.045-0.9.104 kG/m2). 

Consequently, that the gas is thermodynamical ly  not ideal has a marked effect on the charac te r i s t i c s  
of the nonstationary gas flow when there are  sharp (discontinuous) changes in the boundary conditions. In 
these cases  we have to make calculations for pipelines taking these changes into account, i.e.,  s tar t ing from 
the equations for a real  gas. Since there are  no experimental  data for nonstat ionary nonisothermal  gas 
flow conditions, the results  of the numerical  Calculations for s ta t ionary gas flow were compared with 
Shorre ' s  experimental  data [4]. The tempera ture  distribution obtained on a computer  was ve ry  close (with- 
in 1-1.5%) to Shor re ' s  data .  
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c) The numer ica l  solutions of the equations for the nonsta t ionary  nonisotherma[  motion of a rea l  gas 
were  used to study the nature of the changes in the var ious  t e r m s  and combinat ions of t e r m s  in (5)- (7) in 
o rde r  to c la r i fy  the poss ibi l i ty  of l inear iz ing them to obtain approximate  analyt ical  solut ions.  The vi r tual ly  
exac t  numer i ca l  solutions of the comple te  s y s t e m  of equations can be used as r e fe rence  solutions for  e s t i -  
mat ing the a c c u r a c y  of the approx imate  analyt ica l  solutions of the l inear ized equations.  

Analysis  of the s t ruc tu re  of Eqs.  (5)-(7) shows that  the basic  nonl inear i ty  is due to t e r m s  containing 
the de r iva t ives  (~z0/ST) p, az0/St, 8P/~t ,  and a lso  t e r m s  propor t ional  to G 2. 

Hence it  is p r i m a r i l y  of i n t e r e s t  to e s t ima te  the l imits  and nature of the changes in these  t e r m s  in the 
equations f rom the resu l t s  of the numer ica l  calculat ion.  

As the calcula t ions  showed, the com p re s s ib i l i t y  coeff icient  va r i e s  within compara t i ve ly  nar row l imits  
even when the flow rate  (cf. para .  b) changes discontinuously,  i .e. ,  we can take z 0 --(Z0)av. 

S imi la r  conclusions can be made about the behav io r  of the function (Sz0/ST) p, which makes  it possible  
to ave rage  it. This  is equivalent  to the p rac t i ca l  poss ibi l i ty  of wri t ing the di f ferent ia l  equations for  the 
enthalpy in the fo rm [5]: 

di  = cpdT  - -  (cpD~) dP.  

Then we can analyze the var ious  methods of ave rag ing  the t e r m  de te rmining  the fr ict ion loss.  

Charnyi  [1] proposed methods for l inear iz ing the equations of nonsta t ionary  noniso thermaI  motion of 
a gas.  One of the basic  methods which he proposed a s s u m e s  that  it is possible  to ave rage  the t e r m  in the 
equations of motion de te rmin ing  the square  of the fr ict ion,  which makes  it  possible  to reduce the equation 
for  the nons ta t ionary  noniso thermal  motion to the heat  conduction equation (if the iner t ia l  forces  a re  
ignored) or  to the wave equation (if fr ict ion forces  along the pipe length a r e  ignored). 

Fig. 1 shows the gas veloci ty  along the pipeline length as a function of the t ime.  * It follows f rom 
Fig. I that  the gas veloci ty  va r i e s  s ignif icant ly in the zone where  per turba t ions  (gas takeoff) occur .  Here  
w i n c r e a s e s  b y  a fac tor  3-4 depending on the t ime,  by compar i son  with i ts  ave rage  value.  

On the bas i s  of the resu l t s  we can conclude that this method of averag ing  can only be used to calculate  
the p r e s s u r e s  at  points suff icient ly fa r  f rom the location of the per turbat ion  and when the durat ions of the 
t r ans i en t  p r o c e s s e s  a r e  l a r g e .  In the remain ing  cases  the method can lead to cons iderable  e r r o r s .  

Then we can d i scuss  the method of l inear izat ion based on averag ing  the p r e s s u r e  der iva t ive  with 
r e spec t  to the t ime ,  as  used in [6-9]. Fig. 2 shows ~P/~-  along the length of the gas pipe at  var ious  mo-  
ments  of t ime  for  the conditions of the prob lem in [10]. We see  that nea r  the boundary,  where a pe r tu rba -  
tion occurs ,  ~P/St va r i e s  s ignif icant ly  with t ime and along the length of the pipeline and it cannot be a v e r -  
aged. If i t  is  of p rac t i ca l  i n t e re s t  to solve the p rob lem for 5 < 0.6, it is not pe rmi s s ib l e  to ave rage  the 
der iva t ive .  

Thus,  for  p rob lems  with rapid osci l la t ions of the boundary conditions ( s ta r t -up  conditions, pipeline 
shutdown, rapid i nc rea se  in gas takeoff),  this method of l inear iz ing is insuff icient ly exact .  

t 

In [11] and other  paper s  Le ibenzon ' s  p roposa l  to substi tute z = -~- -~- dt or z ~ ~ -  \ -6 - ]av /  

0 

~vas used and this makes  it  possible  to reduce the equations of the nons ta t ionary  noniso thermal  motion of 
a gas to the heat  conduction equation in the square  of the p r e s s u r e .  

Fig. 3 shows P / G  as  a function of the t ime  at var ious  points of the pipeline ( x = 0, 0.5, and 1.0) for  
the conditions of the p rob lem given in [13]. We see that P / G  va r i e s  marked ly  with t ime  and a lso  more  
rapidly  along the length of the pipeline. Thus,  this method of l inear iz ing when there  a r e  rapid osci l la t ions 
of the gas flow rate  can lead to significant  e r r o r s  in the computat ions .  

In addition, f rom the resu l t s  of the numer ica l  calculat ions we es t imated  the o rde r  of magnitude of 
the remain ing  der iva t ives  (ap/a~,  al~/~t, aT/d~,  0T/a t ) .  Numer ica l  ana lys is  showed that  these der iva t ives  
have the following o rde r s  of magnitude: 

*The  conditions for the example  a re  given in b). 
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Noting the nature  of the change in these der iva t ives ,  we can reduce the Eqs.  (5)- (7) to a s i m p l e r  form:  

06 a OP 

Ox ZoT Ot ' 

OP _ b O2z~ 
Ox P ' 

OT _ abc G'T3z~ ( Oz~ ~ + ~ (T*-- T). 

For  smal l  changes in the t e m p e r a t u r e  along the pipeline (0T/0x ~ 0, T- -T*)  Eqs. (16) become the fami l i a r  
equations for  nonsta t ionary  i so the rma l  motion in Charny i ' s  fo rm [11. The compar i son  of the numer ica l  solu-  
tious of Eqs.  (5)- (7) with the approx imate  solutions based  on the l inear ized equations (16) for  the case  of an 
ideal gas [12] showedtha t theyco inc ided  sufficiently c lose ly  to be quite acceptable  for p rac t ica l  appl icat ions.  

P , p ,  W 
U 

A 
X 
f , D  
g, 
z(x) 
Z0 

R 
T , T *  
q 
kl 
Cp 
X 

t 
T 

h 

N O T A T I O N  

are  the mean p r e s s u r e ,  densi ty  and gas veloci ty  a t  a c r o s s  sect ion of the pipe; 
is the in ternal  energy;  
is the t h e r m a l  equivalent  of mechanica l  work;  
is the hydraulic d rag  coefficient;  
a r e  the c r o s s  sect ional  a r e a  and pipeline d iamete r ;  
is the acce le ra t ion  d u e t o  gravi ty;  
is the ordinate of pipe axis measu red  f rom the horizontal  plane; 
is the com pre s s i b i l i t y  coefficient;  
is  the gas constant;  
a r e  the t e m p e r a t u r e  of gas and ex te rna l  medium; 
is the t h e r m a l  flux a c r o s s  pipe wall  per  unit t ime  and per  unit wall  a r ea ;  
IS the gas heat conduction coefficient;  
IS the i sobar ic  gas heat  capacity;  
is the coordinate  along pipeline axis ;  
is the t ime;  
IS the t ime s tep length; 
is the coordinate  s tep  length. 
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