THE PROBLEM OF THE LINEARIZATION OF THE
EQUATIONS OF THE NONSTATIONARY NONISOTHERMAL
FLOW OF A REAL GAS IN PIPELINES
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The analysis of numerical solutions is the basis for investigating the effect of various terms
in the equations of the nonstationary nonisothermal motion of a real gas on the nature of the
solution and its results in order to simplify and linearize the original equations to a form
permitting analytical solution.

1. In the investigation of the nonstationary nonisothermal flows of a gas in pipes it is necessary to
solve simultaneous equations in gas dynamics which have the following form for a cylindrical pipe of con-
stant diameter [1]:
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and the heat conduction equation for the external medium with appropriate initial and boundary conditions.
To obtain the exact solution of the complete system of equations in finite analytical form encounters con-
siderable mathematical difficulties in connection with which in the general case it is difficult to estimate
the contribution of the separate terms in the above equations for arbitrary boundary conditions and, conse~-
quently, to justify deductions about simplifying the equations (1)~{4) and reducing them to a form permitting
approximate analytical solution. Hence it is expedient to make estimates on the basis of the numerical
solutions of problems in which the boundary conditions are specified as discontinuities in the boundary func-
tions known to be greater than those encountered in actual problems.

Usually in solving problems in the nonstationary nonisothermal motion of a gas involving gas transfer
in pipelines the following simplifications are possible: the flow of the gas is assumed to be one-dimensional;
in the case of long pipelines and at gas velocities much less than that of sound, we can neglect terms in
wOw/0x and 9w/8t in the equations of motion and energy and also changes in the geometrical height z [1].

In addition, we can neglect heat transfer along the axis of the pipe because of the thermal conductivity of the
gas; it is assumed that the temperature of the external medium is known and that the heat exchange law is
taken in Newton's form [1]. °

To see that these assumptions are permissible it is necessary to compare the solution of the complete
equations (1)-(4) with that of the equations simplified in accordance with the above conditions.

With the above assumptions, Egs. (1)-{4) can be reduced after some algebra to the following form:
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Fig. 1. Curves for the change in the non- 2=2(P Tk cpy=c,(P, T); a=fIR; b=DMR/2gDP;

dimensional gas velocity along the length ¢ = AR%c,f; m = AR/cy; n = KnDR/c,f.

of the pipeline: 1)t =0; 2) T =0.23; 3) In calculating the nonstationary nonisothermal gas

T =0.69; 4t =2.3; 5t =4.6. flows described by Egs. (5)-(7) we take the initial conditions
as the distribution of the parameters of the steady flow
along the pipe length at the initial moment of time (¢ =0).

In the general case to determine the initial distribution we have to solve a Cauchy problem (with given con-

ditions for the gas temperature and pressure at one end of the pipe), for the appropriate nonlinear system

of ordinary differential equations to which (5)- (7) reduce for the steady motion of the gas.

We consider boundary conditions of the following form for Egs. (5)- (7):
PO, D= TO =50, GL =9, (>0 @8)

2. To solve Egs. (5)-(7) numericallyin 0 = x= L, t=0, with the above initial distribution of the
flow parameters and the boundary conditions (8), we use a finite difference method. Then (5)-(7) are first
transformed to a system of quasi-linear equations of evolutionary type [2]. For this system we construct
explicit second order finite difference schemes with step length h: the derivatives with respect to x are
replaced at internal points by symmetric difference relations and at the boundary points by the appropriate
one-sided three-point difference equations.* If is appropriate to use such schemes for systems of equations
of quite complex form (5)-(7), while restrictions on the stability, as shown by investigations and practical
calculations for the flows considered, do not lead to a significant reduction in the time step length 7.

Ta determine the pressure (P) and temperature (T) at points of the right boundary (x =L) in the case
of condition (8), we must solve simultaneously a system of nonlinear differential equations at this boundary
which follows from the above equations:
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The finite difference approximation for Eqs. (9) and (10) at the boundary X =1 with an accuracy of
O(?) leads to the following nonlinear equations for the pressure and temperature:
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*The transformed system of Egs. (5)- (7) was solved nurgerically on a computer in nondimensional form.
The nondimensional variables were: X =x/L; T =t/t;; P =P/Py; G=G/G,, where ty=L/cy; Pc, Te
were the critical pressure and temperature; c; is the speed of sound in the gas.
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Fig. 2. Change in the pressure der1vat1ve with time along the length of the pipeline:
)T =0.25; 2)T =0.75; 3) T =2.25; 4) T =4.25; 5) T =6.50.

Fig. 3. Change in P/G with time: 1) X=0; 2) x=0.5; 3) X = 1.0.
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To determine the values of Py 1 from (11) we use an iteration method:
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For an ideal gas (z ='1), Eq. (11) can be solved for ﬁn, k+ 1 in finite form:
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3. The above finite difference schemes and algorithms were used to calculate the nonstationary non-
isothermal flows of a real gas in pipelines for the following purposes: to estimate the effect of the inertial
terms 8 (pw)/dtand 8(pw?)/0x in the equations of the nonstationary nonisothermal motion of a gas in pipelines
(1)-(4); to investigate the effect of the actual properties of the gas on the nature of the changes in the para-
meters of the gas flow by comparison with the case of an ideal gas; to investigate the nature of the changes
in the various terms in the original equations so as to simplify them and obtain linearized equations permit-
ting approximate analytical solutions.

a) From the results of the calculations we compared the numerical solutions of Eqs. (1)-{) under the
above conditions with and without the terms 9(pw)/0t and 8 (pw?)/0x for the following boundary conditions
t>0):

POH=1LE TO)=10; pw(L, t)=0. (15)
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TABLE 1. Comparison of the Distributions of At the initial moment of time (t =0) the gas flow

the Parameters of Steady Nonisothermal Flow was steady. The case under consideration is limiting
With and Without Changes in the Velocity Head and this makes it possible to estimate the maximal
(Actual gas) possible divergences. Physically this problem cor-
responds to the case of the instantaneous covering of
. km P.atm T °C_ the right end of the pipe.
' 1 I I The solution of Eqs. (5)-(7), ignoring the iner-
0 55,0 55,0 47,0 47,0 tial term, was obtained using the above algorithm;
ég g?ii g?zf 33'2 g%g in the example considered it was compared with the
30 49,60 | 4956 33,5 33.4 numerical results obtained for the initial and boundary
gg g:;g fg:gg gg:g gg:g ~ conditions given below and the same initial data for
60 43,79 43,70 23,7 23,6 the system of equations which takes account of the in-
70 41,71 41,61 21,0 21,0 ; oot .
80 39°54 30,43 186 185 ertial terms [3]. The conditions for the numerical
Igg 31:32 gZ: ;g }i:i _ %2:3 exan}ple, tt.le computati?nal Iresults, and the corres-
Note. I corresponds to the solution taking account of changes ponding estimates are given in [2].
in the velocity head; II to the solution ignoring changes in the We also compared the solutions with and with-

s PR P . PO} = 2, . . .
velocity head. The initial conditions were: P(0) = 55 kG/em’; out the inertial terms for stationary gas flow (Table

= 2 Ce = . 3-'0 <X =< 100,
T(0) = 47°C; P (x) = 25 kg *see/m'y 0 =x 1). It follows from the analysis of the results that
the inertial terms have insignificant effect on the gas
flow conditions in main pipelines.

b) The calculations made is possible to analyze for the flows considered the limits of the deviations
of the gas flow parameters and the errors occurringasa result of ignoring the actual properties of the gas
in calculating the pressure and temperature distributions of the gas along the pipeline [2].

In addition, to estimate the effect of the gas being thermodynamically not ideal on the nature of the
flow conditions we considered the case of a discontinuous increase in the gas flow rate at the end of the
pipe. This case is limiting in the sense that in real conditions, with the exception of the case where there
are discontinuities in the pipelines, all possible changes in pw are smaller in magnitude and more drawn
out in time.

The conditions for the numerical example in the second case were as follows. The initial conditions
for the calculation of the steady flow were P(0,0) =55- 10* kG/mz; T (0,0) =320°K; G(0,0) =100 kg/sec. The
boundary conditions (¢ >0) were: P(0,t) =55- 10t kG/mz; T(0,t) =320°K; G(L,t) =200 kg/sec.

The calculations were made with the following values of the parameters: L =100 km; D =0.7 m;
P,=45.8- 10¢ kG/m?; Te =190.6°K; A =0.012; R =50 kGm/kg - °C; Cp = 0.5 keal/kg-°C, T*=275°K; K =2.0
keal/m?-h.°C.

Bertleau's form of the state equation was used as the equation of state for the real gas.

Analysis of these numerical calculations in particular showed that the curves for the depression of the
temperature along the length of the pipelines for an actual gas are lower than the corresponding curves for
an ideal gas because the gas is thermodynamically not ideal. As x increases (i.e., the depression of the
pressure) the temperature difference between a real and an ideal gas increases. At the end of the pipe, for
example, when t =4.6 (20 min) this difference reaches a very significant value, 0.06 (~11.4°C) for the
case under consideration; for t =0 the discrepancy between the temperatures is 0.017 (~3.3°C) at the end
of the pipe. The calculations show that the pressure of a real gas in time remains higher than that of an
ideal gas. For T =0 the discrepancy is 0.04 (~1.8-10% kG/m? at the end of the pipe. As the time increases
the difference between the pressure of a real gas and that of an ideal one increases and in the given example
reaches AP =0.17 (7.6-10* kG/m?) for T =4.6. At points far from the right boundary the difference is 0.001
-0.002 (0.045-0.9 - 10* kG/m?).

Consequently, that the gas is thermodynamically not ideal has a marked effect on the characteristics
of the nonstationary gas flow when there are sharp (discontinuous) changes in the boundary conditions. In
these cases we have to make calculations for pipelines taking these changes into account, i.e., starting from
the equations for a real gas. Since there are no experimental data for nonstationary nonisothermal gas
flow conditions, the results of the numerical calculations for stationary gas flow were compared with
Shorre's experimental data [4]. The temperature distribution obtained on a computer was very close (with~
in 1-1.5%) to Shorre's data.



¢) The numerical solutions of the equations for the nonstationary nonisothermal motion of a real gas
were used to study the nature of the changes in the various terms and combinations of terms in (5)-(7) in
order to clarify the possibility of linearizing them to obtain approximate analytical solutions. The virtually
exact numerical solutions of the complete system of equations can be used as reference solutions for esti-
mating the accuracy of the approximate analytical solutions of the linearized equations.

Analysis of the structure of Egs. (5)-(7) shows that the basic nonlinearity is due to terms containing
the derivatives (8z(/9T)p, 98z,/0t, 9P/dt, and also terms proportional to G,

Hence it is primarily of interest to estimate the limits and nature of the changes in these terms in the
equations from the results of the numerical calculation.

As the calculations showed, the compressibility coefficient varies within comparatively narrow limits
even when the flow rate (cf.para. b) changes discontinuously, i.e., we can take z; %(zo)av.

Similar conclusions can be made about the behavior of the function (8z0/3T) , which makes it possible
to average it, This is equivalent to the practical possibility of writing the differential equations for the
enthalpy in the form [5]:

di = ¢, dT — (c,D;) dP.
Then we can analyze the various methods of averaging the term determining the friction loss.

Charnyi [1] proposed methods for linearizing the equations of nonstationary nonisothermal motion of
a gas. One of the basic methods which he proposed assumes that it is possible to average the term in the
equations of motion determining the square of the friction, which makes it possible to reduce the equation
for the nonstationary nonisothermal motion to the heat conduction equation (if the inertial forces are
ignored) or to the wave equation (if friction forces along the pipe length are ignored).

Fig. 1 shows the gas velocity along the pipeline length as a function of the time.* It follows from
Fig. 1 that the gas velocity varies significantly in the zone where perturbations (gas takeoff) occur. Here
w increases by a factor 3-4 depending on the time, by comparison with its average value.

On the basis of the results we can conclude that this method of averaging can only be used to calculate
the pressures at points sufficiently far from the location of the perturbation and when the durations of the
transient processes are large. In the remaining cases the method can lead to considerable errors.

Then we can discuss the method of linearization based on averaging the pressure derivative with
respect to the time, as used in [6-9]. Fig. 2 shows 8:5/8? along the length of the gas pipe at various mo-
ments of time for the conditions of the problem in [10]. We see that near the boundary, where a perturba-
tion occurs, 9P/8t varies significantly with time and along the length of the pipeline and it cannot be aver-
aged. If it is of practical interest to solve the problem for X <0.6, it is not permissible to average the
derivative.

Thus, for problems with rapid oscillations of the boundary conditions (start-up conditions, pipeline
shutdown, rapid increase in gas takeoff), this method of linearizing is in§ufficiently exact.

In [11] and other papers Leibenzon's proposal to substitute v = %f-g— dt ( or T % (%) t)
a
0

was used and this makes it possible to reduce the equations of the nonstationary nonisothermal motion of
a gas to the heat conduction equation in the square of the pressure.

v

Fig. 3 shows P/G as a function of the time at various points of the pipeline (x=0, 0.5, and 1.0) for
the conditions of the problem given in [13]. We see that P/G varies markedly with time and also more
rapidly along the length of the pipeline. Thus, this method of linearizing when there are rapid oscillations
of the gas flow rate can lead to significant errors in the computations.

In addition, from the rgsults o£ thg nuinerica[_cal_culations we estimated the order of magnitude of
the remaining derivatives (8P/9x, 9P/0t, 8T /dx, 9T/8t). Numerical analysis showed that these derivatives
have the following orders of magnitude:

*The conditions for the example are given in b).
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Noting the nature of the change in these derivatives, we can reduce the Eqgs. (5)-(7) to a simpler form:
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mall changes in the temperature along the pipeline (0T/8x—~ 0, T =T*)Eqgs. (16) become the familiar

equations for nonstationary isothermal motion in Charnyi's form[1]. The comparison of the numerical solu-

tions
ideal

P,p,
u

A
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D
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of Egs. (5)-(7) with the approximate solutions based on the linearized equations (16) for the case of an

gas [12] showed thatthey coincided sufficiently closely to be quite acceptable for practical applications.
NOTATION
w are the mean pressure, density and gas velocity at a cross section of the pipe;

is the internal energy;

is the thermal equivalent of mechanical work;

is the hydraulic drag coefficient;

are the cross sectional area and pipeline diameter;

is the acceleration due to gravity;

is the ordinate of pipe axis measured from the horizontal plane;
is the compressibility coefficient;

is the gas constant;

are the temperature of gas and external medium;

is the thermal flux across pipe wall per unit time and per unit wall area;
is the gas heat conduction coefficient;

is the isobaric gas heat capacity;

is the coordinate along pipeline axis;

is the time;

is the time step length;

is the coordinate step length.
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